Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(3): e11117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455144

RESUMO

Understanding the genetic basis for adapting to thermal environments is important due to serious effects of global warming on ectothermic species. Various genes associated with thermal adaptation in lizards have been identified mainly focusing on changes in gene expression or the detection of positively selected genes using coding regions. Only a few comprehensive genome-wide analyses have included noncoding regions. This study aimed to identify evolutionarily conserved and accelerated genomic regions using whole genomes of eight Anolis lizard species that have repeatedly adapted to similar thermal environments in multiple lineages. Evolutionarily conserved genomic regions were extracted as regions with overall sequence conservation (regions with fewer base substitutions) across all lineages compared with the neutral model. Genomic regions that underwent accelerated evolution in the lineage of interest were identified as those with more base substitutions in the target branch than in the entire background branch. Conserved elements across all branches were relatively abundant in "intergenic" genomic regions among noncoding regions. Accelerated regions (ARs) of each lineage contained a significantly greater proportion of noncoding RNA genes than the entire multiple alignment. Common genes containing ARs within 5 kb of their vicinity in lineages with similar thermal habitats were identified. Many genes associated with circadian rhythms and behavior were found in hot-open and cool-shaded habitat lineages. These genes might play a role in contributing to thermal adaptation and assist future studies examining the function of genes involved in thermal adaptation via genome editing.

2.
PLoS Genet ; 19(12): e1011069, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38051754

RESUMO

For understanding the evolutionary mechanism of sexually selected exaggerated traits, it is essential to uncover its molecular basis. By using broad-horned flour beetle that has male-specific exaggerated structures (mandibular horn, head horn and gena enlargement), we investigated the transcriptomic and functional characters of sex-biased genes. Comparative transcriptome of male vs. female prepupal heads elucidated 673 sex-biased genes. Counter-intuitively, majority of them were female-biased (584 genes), and GO enrichment analysis showed cell-adhesion molecules were frequently female-biased. This pattern motivated us to hypothesize that female-biased transcripts (i.e. the transcripts diminished in males) may play a role in outgrowth formation. Potentially, female-biased genes may act as suppressors of weapon structure. In order to test the functionality of female-biased genes, we performed RNAi-mediated functional screening for top 20 female-biased genes and 3 genes in the most enriched GO term (cell-cell adhesion, fat1/2/3, fat4 and dachsous). Knockdown of one transcription factor, zinc finger protein 608 (zfp608) resulted in the formation of male-like gena in females, supporting the outgrowth suppression function of this gene. Similarly, knockdown of fat4 induced rudimental, abnormal mandibular horn in female. fat1/2/3RNAi, fat4RNAi and dachsousRNAi males exhibited thick and/or short mandibular horns and legs. These cell adhesion molecules are known to regulate tissue growth direction and known to be involved in the weapon formation in Scarabaeoidea beetles. Functional evidence in phylogenetically distant broad-horned flour beetle suggest that cell adhesion genes are repeatedly deployed in the acquisition of outgrowth. In conclusion, this study clarified the overlooked functions of female-biased genes in weapon development.


Assuntos
Besouros , Animais , Feminino , Masculino , Besouros/genética , Transcriptoma/genética , Evolução Biológica , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Moléculas de Adesão Celular/genética , Caracteres Sexuais
3.
Gene ; 888: 147763, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37666375

RESUMO

The mode of sex determination in vertebrates can be categorized as genotypic or environmental. In the case of genotypic sex determination (GSD), the sexual fate of an organism is determined by the chromosome composition with some having dominant genes, named sex-determining genes, that drive the sex phenotypes. By contrast, many reptiles exhibit environmental sex determination (ESD), whereby environmental stimuli drive sex determination, and most notably temperature. To date, temperature-dependent sex determination (TSD) has been found in most turtles, some lizards, and all crocodylians, but commonalities in the controlling processes are not well established. Recent innovative sequencing technology has enabled investigations into gonadal transcriptomic profiles during temperature-sensitive periods (TSP) in various TSD species which can help elucidate the controlling mechanisms. In this study, we conducted a time-course analysis of the gonadal transcriptome during the male-producing temperature (26℃) of the Reeve's turtle (Chinese three-keeled pond turtle) Mauremys reevesii. We then compared the transcriptome profiles for this turtle species during the TSP with that for the American alligator Alligator mississippiensis to identify conserved reptilian TSD-related genes. Our transcriptome-based findings provide an opportunity to retrieve the candidate molecular cues that are activated during TSP and compare these target responses between TSD and GSD turtle species, and between TSD species.

4.
Plant Physiol ; 193(4): 2677-2690, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37655911

RESUMO

Host plant-derived strigolactones trigger hyphal branching in arbuscular mycorrhizal (AM) fungi, initiating a symbiotic interaction between land plants and AM fungi. However, our previous studies revealed that gibberellin-treated lisianthus (Eustoma grandiflorum, Gentianaceae) activates rhizospheric hyphal branching in AM fungi using unidentified molecules other than strigolactones. In this study, we analyzed independent transcriptomic data of E. grandiflorum and found that the biosynthesis of gentiopicroside (GPS) and swertiamarin (SWM), characteristic monoterpene glucosides in Gentianaceae, was upregulated in gibberellin-treated E. grandiflorum roots. Moreover, these metabolites considerably promoted hyphal branching in the Glomeraceae AM fungi Rhizophagus irregularis and Rhizophagus clarus. GPS treatment also enhanced R. irregularis colonization of the monocotyledonous crop chive (Allium schoenoprasum). Interestingly, these metabolites did not provoke the germination of the root parasitic plant common broomrape (Orobanche minor). Altogether, our study unveiled the role of GPS and SWM in activating the symbiotic relationship between AM fungi and E. grandiflorum.


Assuntos
Liliaceae , Micorrizas , Orobanche , Micorrizas/fisiologia , Giberelinas/metabolismo , Glucosídeos/metabolismo , Raízes de Plantas/metabolismo , Fungos , Hifas , Simbiose/fisiologia , Plantas
5.
Plant Physiol ; 194(1): 546-563, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776523

RESUMO

Orchids parasitically depend on external nutrients from mycorrhizal fungi for seed germination. Previous findings suggest that orchids utilize a genetic system of mutualistic arbuscular mycorrhizal (AM) symbiosis, in which the plant hormone gibberellin (GA) negatively affects fungal colonization and development, to establish parasitic symbiosis. Although GA generally promotes seed germination in photosynthetic plants, previous studies have reported low sensitivity of GA in seed germination of mycoheterotrophic orchids where mycorrhizal symbiosis occurs concurrently. To elucidate the connecting mechanisms of orchid seed germination and mycorrhizal symbiosis at the molecular level, we investigated the effect of GA on a hyacinth orchid (Bletilla striata) seed germination and mycorrhizal symbiosis using asymbiotic and symbiotic germination methods. Additionally, we compared the transcriptome profiles between asymbiotically and symbiotically germinated seeds. Exogenous GA negatively affected seed germination and fungal colonization, and endogenous bioactive GA was actively converted to the inactive form during seed germination. Transcriptome analysis showed that B. striata shared many of the induced genes between asymbiotically and symbiotically germinated seeds, including GA metabolism- and signaling-related genes and AM-specific marker homologs. Our study suggests that orchids have evolved in a manner that they do not use bioactive GA as a positive regulator of seed germination and instead autoactivate the mycorrhizal symbiosis pathway through GA inactivation to accept the fungal partner immediately during seed germination.


Assuntos
Micorrizas , Orchidaceae , Simbiose/genética , Micorrizas/fisiologia , Germinação/genética , Giberelinas , Sementes/genética , Orchidaceae/genética
6.
PNAS Nexus ; 2(8): pgad236, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37559748

RESUMO

Pollinosis, also known as pollen allergy or hay fever, is a global problem caused by pollen produced by various plant species. The wind-pollinated Japanese cedar (Cryptomeria japonica) is the largest contributor to severe pollinosis in Japan, where increasing proportions of people have been affected in recent decades. The MALE STERILITY 4 (MS4) locus of Japanese cedar controls pollen production, and its homozygous mutants (ms4/ms4) show abnormal pollen development after the tetrad stage and produce no mature pollen. In this study, we narrowed down the MS4 locus by fine mapping in Japanese cedar and found TETRAKETIDE α-PYRONE REDUCTASE 1 (TKPR1) gene in this region. Transformation experiments using Arabidopsis thaliana showed that single-nucleotide substitution ("T" to "C" at 244-nt position) of CjTKPR1 determines pollen production. Broad conservation of TKPR1 beyond plant division could lead to the creation of pollen-free plants not only for Japanese cedar but also for broader plant species.

7.
Neuropsychopharmacol Rep ; 43(3): 403-413, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498306

RESUMO

AIMS: Schizophrenia is a chronic relapsing psychiatric disorder that is characterized by many symptoms and has a high heritability. There were studies showing that the phospholipid abnormalities in subjects with schizophrenia (Front Biosci, S3, 2011, 153; Schizophr Bull, 48, 2022, 1125; Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933). Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in subjects with schizophrenia (Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933; Schizophr Res, 215, 2020, 493; J Psychiatr Res, 47, 2013, 636; Int J Mol Sci, 22, 2021). For exploring the signaling pathways contributing to the lipid changes in previous study (Sci Rep, 7, 2017, 6), we performed two types of transcriptome analyses in subjects with schizophrenia: an unbiased transcriptome analysis solely based on RNA-seq data and a correlation analysis between levels of gene expression and lipids. METHODS: RNA-Seq analysis was performed in the postmortem prefrontal cortex from 10 subjects with schizophrenia and 5 controls. Correlation analysis between the transcriptome and lipidome from 9 subjects, which are the same samples in the previous lipidomics study (Sci Rep, 7, 2017, 6). RESULTS: Extraction of differentially expressed genes (DEGs) and further sequence and functional group analysis revealed changes in gene expression levels in phosphoinositide 3-kinase (PI3K)-Akt signaling and the complement system. In addition, a correlation analysis clarified alterations in ether lipid metabolism pathway, which is not found as DEGs in transcriptome analysis alone. CONCLUSIONS: This study provided results of the integrated analysis of the schizophrenia-associated transcriptome and lipidome within the PFC and revealed that lipid-correlated alterations in the transcriptome are enriched in specific pathways including ether lipid metabolism pathway.


Assuntos
Fosfolipídeos , Córtex Pré-Frontal , Esquizofrenia , Transcriptoma , Humanos , População do Leste Asiático , Éteres/metabolismo , Metabolismo dos Lipídeos/genética , Fosfatidilinositol 3-Quinases/análise , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipídeos/análise , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Córtex Pré-Frontal/química , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Autopsia
8.
Sci Rep ; 13(1): 8735, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253792

RESUMO

The Japanese rhinoceros beetle Trypoxylus dichotomus is a giant beetle with distinctive exaggerated horns present on the head and prothoracic regions of the male. T. dichotomus has been used as a research model in various fields such as evolutionary developmental biology, ecology, ethology, biomimetics, and drug discovery. In this study, de novo assembly of 615 Mb, representing 80% of the genome estimated by flow cytometry, was obtained using the 10 × Chromium platform. The scaffold N50 length of the genome assembly was 8.02 Mb, with repetitive elements predicted to comprise 49.5% of the assembly. In total, 23,987 protein-coding genes were predicted in the genome. In addition, de novo assembly of the mitochondrial genome yielded a contig of 20,217 bp. We also analyzed the transcriptome by generating 16 RNA-seq libraries from a variety of tissues of both sexes and developmental stages, which allowed us to identify 13 co-expressed gene modules. We focused on the genes related to horn formation and obtained new insights into the evolution of the gene repertoire and sexual dimorphism as exemplified by the sex-specific splicing pattern of the doublesex gene. This genomic information will be an excellent resource for further functional and evolutionary analyses, including the evolutionary origin and genetic regulation of beetle horns and the molecular mechanisms underlying sexual dimorphism.


Assuntos
Besouros , Animais , Feminino , Masculino , Besouros/genética , Fenótipo , Caracteres Sexuais
9.
Front Plant Sci ; 14: 1099816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063182

RESUMO

Excess boron (B) is toxic to plants and thereby causes DNA damage and cell death in root meristems. However, the underlying mechanisms which link boron and DNA damage remain unclear. It has been reported that the rpt5a-6 mutant of the 26S proteasome is sensitive to excess boron, resulting in more frequent cell death in root meristem and reduced root elongation. In this study, we showed that a reduction in root growth in the rpt5a mutant in the presence of high boron levels is repressed by a mutation in NAC domain containing transcription factor NAC103, a substrate of the proteasome, which functions in the unfolded protein response pathway. The mutation in NAC103 alleviated excess-B-induced DNA damage and cell death in root meristems of the rpt5a mutant. Superoxide ( O 2 - ) staining with nitroblue tetrazolium revealed that boron stress causes O 2 - accumulation in root tips, which was higher in the rpt5a-6 mutant, whereas the accumulation was lower in the rpt5a-6 nac103-3 double mutant. Our work demonstrates the overall involvement of NAC103 in maintaining healthy root meristem under excess boron conditions in the absence of RPT5A proteasome subunit.

10.
Plant J ; 115(2): 563-576, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058128

RESUMO

An Arabidopsis mutant displaying impaired stomatal responses to CO2 , cdi4, was isolated by a leaf thermal imaging screening. The mutated gene PECT1 encodes CTP:phosphorylethanolamine cytidylyltransferase. The cdi4 exhibited a decrease in phosphatidylethanolamine levels and a defect in light-induced stomatal opening as well as low-CO2 -induced stomatal opening. We created RNAi lines in which PECT1 was specifically repressed in guard cells. These lines are impaired in their stomatal responses to low-CO2 concentrations or light. Fungal toxin fusicoccin (FC) promotes stomatal opening by activating plasma membrane H+ -ATPases in guard cells via phosphorylation. Arabidopsis H+ -ATPase1 (AHA1) has been reported to be highly expressed in guard cells, and its activation by FC induces stomatal opening. The cdi4 and PECT1 RNAi lines displayed a reduced stomatal opening response to FC. However, similar to in the wild-type, cdi4 maintained normal levels of phosphorylation and activation of the stomatal H+ -ATPases after FC treatment. Furthermore, the cdi4 displayed normal localization of GFP-AHA1 fusion protein and normal levels of AHA1 transcripts. Based on these results, we discuss how PECT1 could regulate CO2 - and light-induced stomatal movements in guard cells in a manner that is independent and downstream of the activation of H+ -ATPases. [Correction added on 15 May 2023, after first online publication: The third sentence is revised in this version.].


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Fosfatidiletanolaminas/metabolismo , Estômatos de Plantas/metabolismo , Adenosina Trifosfatases/metabolismo , Luz , ATPases Translocadoras de Prótons/metabolismo
11.
Plant Biotechnol (Tokyo) ; 39(3): 221-227, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36349239

RESUMO

Calcium (Ca) deficiency affects the yields and quality of agricultural products. Susceptibility to Ca deficiency varies among crops and cultivars; however, its genetic basis remains largely unknown. Genes required for low Ca tolerance in Arabidopsis thaliana have been identified. In this study, we identified a novel gene required for low Ca tolerance in A. thaliana. We isolated a mutant sensitive to low Ca concentrations and identified Glucan synthase-like (GSL) 8 as a gene responsible for low Ca tolerance. GSL8 is a paralog of the previously identified low Ca tolerance gene GSL10, which encodes ß-1,3 glucan(callose) synthase. Under low Ca conditions, the shoot growth of gsl8 mutants were inhibited compared to wild-type plants. A grafting experiment indicated that the shoot, but not root, genotype was important for the shoot growth phenotype. The ectopic accumulation of callose under low Ca conditions was reduced in gsl8 mutants. We further investigated the interaction between GSL8 and GSL10 by testing the gsl8 gsl10 double mutant for sensitivity to low Ca concentrations. The double mutant exhibited a more severe phenotype than the single mutant under 0.3 mM Ca, indicating additive effects of GSL8 and GSL10 with respect to low Ca tolerance. These results establish that GSL genes are required for low Ca tolerance in A. thaliana.

12.
BMC Ecol Evol ; 22(1): 129, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333669

RESUMO

BACKGROUND: Detecting genomic variants and their accumulation processes during species diversification and adaptive radiation is important for understanding the molecular and genetic basis of evolution. Anolis lizards in the West Indies are good models for studying evolutionary mechanisms because of the repeated evolution of their morphology and the ecology. We performed de novo genome assembly of six Cuban Anolis lizards with different ecomorphs and thermal habitats (Anolis isolepis, Anolis allisoni, Anolis porcatus, Anolis allogus, Anolis homolechis, and Anolis sagrei). We carried out a comparative analysis of these genome assemblies to investigate the genetic changes that occurred during their diversification. RESULTS: We reconstructed novel draft genomes with relatively long scaffolds and high gene completeness, with the scaffold N50 ranging from 5.56 to 39.79 Mb and vertebrate Benchmarking Universal Single-Copy Orthologs completeness ranging from 77.5% to 86.9%. Comparing the repeat element compositions and landscapes revealed differences in the accumulation process between Cuban trunk-crown and trunk-ground species and separate expansions of several families of LINE in each Cuban trunk-ground species. Duplicated gene analysis suggested that the proportional differences in duplicated gene numbers among Cuban Anolis lizards may be associated with differences in their habitat ranges. Additionally, Pairwise Sequentially Markovian Coalescent analysis suggested that the effective population sizes of each species may have been affected by Cuba's geohistory. CONCLUSIONS: We provide draft genomes of six Cuban Anolis lizards and detected species and lineage-specific transposon accumulation and gene copy number changes that may be involved in adaptive evolution. The change processes in the past effective population size was also estimated, and the factors involved were inferred. These results provide new insights into the genetic basis of Anolis lizard diversification and are expected to serve as a stepping stone for the further elucidation of their diversification mechanisms.


Assuntos
Lagartos , Animais , Lagartos/genética , Ecossistema , Ecologia , Genômica , Índias Ocidentais
13.
Plant Cell Physiol ; 63(10): 1474-1484, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35876020

RESUMO

Crops that exhibit symptoms of calcium (Ca) deficiency constitute a major agricultural problem. Molecular breeding of resistant cultivars is a promising method for overcoming this problem. However, the involved genes must first be identified. Here, we show that the glucan synthase-like (GSL) 1 gene is essential for low-Ca tolerance in Arabidopsis thaliana. GSL1 is homologous to GSL10, which we previously showed was essential for low-Ca tolerance. Under low-Ca conditions, gsl1 mutants exhibit reduced growth and the onset of necrosis in new leaves. These symptoms are typical of Ca-deficient crops. A grafting experiment suggested that the shoot genotype, but not the root genotype, was important for the suppression of shoot necrosis. The ectopic accumulation of callose under low-Ca conditions was significantly reduced in gsl1 mutants compared with wild-type plants. Because the corresponding single-mutant phenotypes are similar, we investigated the interaction between GSL1 and GSL10 by testing the gsl1 gsl10 double mutant for sensitivity to low-Ca conditions. The double mutant exhibited a more severe phenotype than did the single mutants, indicating that the effects of GSL1 and GSL10 on low-Ca tolerance are additive. Because GSL genes are highly conserved within the plant kingdom, the GSL loci may be useful for breeding low-Ca tolerant crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cálcio/metabolismo , Melhoramento Vegetal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Necrose , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética
14.
NAR Genom Bioinform ; 4(2): lqac029, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35387384

RESUMO

Non-biting midges (Chironomidae) are known to inhabit a wide range of environments, and certain species can tolerate extreme conditions, where the rest of insects cannot survive. In particular, the sleeping chironomid Polypedilum vanderplanki is known for the remarkable ability of its larvae to withstand almost complete desiccation by entering a state called anhydrobiosis. Chromosome numbers in chironomids are higher than in other dipterans and this extra genomic resource might facilitate rapid adaptation to novel environments. We used improved sequencing strategies to assemble a chromosome-level genome sequence for P. vanderplanki for deep comparative analysis of genomic location of genes associated with desiccation tolerance. Using whole genome-based cross-species and intra-species analysis, we provide evidence for the unique functional specialization of Chromosome 4 through extensive acquisition of novel genes. In contrast to other insect genomes, in the sleeping chironomid a uniquely high degree of subfunctionalization in paralogous anhydrobiosis genes occurs in this chromosome, as well as pseudogenization in a highly duplicated gene family. Our findings suggest that the Chromosome 4 in Polypedilum is a site of high genetic turnover, allowing it to act as a 'sandbox' for evolutionary experiments, thus facilitating the rapid adaptation of midges to harsh environments.

15.
PLoS One ; 17(3): e0265008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35271636

RESUMO

The precursor of heme, protoporphyrin IX (PPIX), accumulates abundantly in the uteri of birds, such as Japanese quail, Coturnix japonica, which has brown-speckled eggshells; however, the molecular basis of PPIX production in the uterus remains largely unknown. Here, we investigated the cause of low PPIX production in a classical Japanese quail mutant exhibiting white eggshells by comparing its gene expression in the uterus with that of the wild type using transcriptome analysis. We also performed genetic linkage analysis to identify the causative genomic region of the white eggshell phenotype. We found that 11 genes, including 5'-aminolevulinate synthase 1 (ALAS1) and hephaestin-like 1 (HEPHL1), were specifically upregulated in the wild-type uterus and downregulated in the mutant. We mapped the 172 kb candidate genomic region on chromosome 6, which contains several genes, including a part of the paired-like homeodomain 3 (PITX3), which encodes a transcription factor. ALAS1, HEPHL1, and PITX3 were expressed in the apical cells of the luminal epithelium and lamina propria cells of the uterine mucosa of the wild-type quail, while their expression levels were downregulated in the cells of the mutant quail. Biochemical analysis using uterine homogenates indicated that the restricted availability of 5'-aminolevulinic acid is the main cause of low PPIX production. These results suggest that uterus-specific transcriptional regulation of heme-biosynthesis-related genes is an evolutionarily acquired mechanism of eggshell pigment production in Japanese quail. Based on these findings, we discussed the molecular basis of PPIX production in the uteri of Japanese quails.


Assuntos
Coturnix , Casca de Ovo , Ácido Aminolevulínico , Animais , Coturnix/genética , Casca de Ovo/fisiologia , Ovos , Feminino , Heme/metabolismo , Codorniz/metabolismo , Coelhos , Útero/metabolismo
16.
Plant Cell Physiol ; 63(3): 384-400, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35001102

RESUMO

Regeneration in land plants is accompanied by the establishment of new stem cells, which often involves reactivation of the cell division potential in differentiated cells. The phytohormone auxin plays pivotal roles in this process. In bryophytes, regeneration is enhanced by the removal of the apex and repressed by exogenously applied auxin, which has long been proposed as a form of apical dominance. However, the molecular basis behind these observations remains unexplored. Here, we demonstrate that in the liverwort Marchantia polymorpha, the level of endogenous auxin is transiently decreased in the cut surface of decapitated explants, and identify by transcriptome analysis a key transcription factor gene, LOW-AUXIN RESPONSIVE (MpLAXR), which is induced upon auxin reduction. Loss of MpLAXR function resulted in delayed cell cycle reactivation, and transient expression of MpLAXR was sufficient to overcome the inhibition of regeneration by exogenously applied auxin. Furthermore, ectopic expression of MpLAXR caused cell proliferation in normally quiescent tissues. Together, these data indicate that decapitation causes a reduction of auxin level at the cut surface, where, in response, MpLAXR is up-regulated to trigger cellular reprogramming. MpLAXR is an ortholog of Arabidopsis ENHANCER OF SHOOT REGENERATION 1/DORNRÖSCHEN, which has dual functions as a shoot regeneration factor and a regulator of axillary meristem initiation, the latter of which requires a low auxin level. Thus, our findings provide insights into stem cell regulation as well as apical dominance establishment in land plants.


Assuntos
Arabidopsis , Marchantia , Arabidopsis/genética , Reprogramação Celular/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Marchantia/genética , Marchantia/metabolismo
17.
Plant Biotechnol (Tokyo) ; 38(2): 187-196, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34393597

RESUMO

Parasitic plants exchange various types of RNAs with their host plants, including mRNA, and small non-coding RNA. Among small non-coding RNAs, miRNA production is known to be induced at the haustorial interface. The induced miRNAs transfer to the host plant and activate secondary siRNA production to silence target genes in the host. In addition to interfacial transfer, long-distance movement of the small RNAs has also been known to mediate signaling and regulate biological processes. In this study, we tested the long-distance movement of trans-species small RNAs in a parasitic-plant complex. Small RNA-Seq was performed using a complex of a stem parasitic plant, Cuscuta campestris, and a host, Arabidopsis thaliana. In the host plant's parasitized stem, genes involved in the production of secondary siRNA, AtSGS3 and AtRDR6, were upregulated, and 22-nt small RNA was enriched concomitantly, suggesting the activation of secondary siRNA production. Stem-loop RT-PCR and subsequent sequencing experimentally confirmed the mobility of the small RNAs. Trans-species mobile small RNAs were detected in the parasitic interface and also in distant organs. To clarify the mode of long-distance translocation, we examined whether C. campestris-derived small RNA moves long distances in A. thaliana sgs3 and rdr6 mutants or not. Mobility of C. campestris-derived small RNA in sgs3 and rdr6 mutants suggested the occurrence of direct long-distance transport without secondary siRNA production in the recipient plant.

18.
Front Plant Sci ; 12: 680151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122492

RESUMO

Root-knot nematodes (RKNs) are among the most devastating pests in agriculture. Solanum torvum Sw. (Turkey berry) has been used as a rootstock for eggplant (aubergine) cultivation because of its resistance to RKNs, including Meloidogyne incognita and M. arenaria. We previously found that a pathotype of M. arenaria, A2-J, is able to infect and propagate in S. torvum. In vitro infection assays showed that S. torvum induced the accumulation of brown pigments during avirulent pathotype A2-O infection, but not during virulent A2-J infection. This experimental system is advantageous because resistant and susceptible responses can be distinguished within a few days, and because a single plant genome can yield information about both resistant and susceptible responses. Comparative RNA-sequencing analysis of S. torvum inoculated with A2-J and A2-O at early stages of infection was used to parse the specific resistance and susceptible responses. Infection with A2-J did not induce statistically significant changes in gene expression within one day post-inoculation (DPI), but afterward, A2-J specifically induced the expression of chalcone synthase, spermidine synthase, and genes related to cell wall modification and transmembrane transport. Infection with A2-O rapidly induced the expression of genes encoding class III peroxidases, sesquiterpene synthases, and fatty acid desaturases at 1 DPI, followed by genes involved in defense, hormone signaling, and the biosynthesis of lignin at 3 DPI. Both isolates induced the expression of suberin biosynthetic genes, which may be triggered by wounding during nematode infection. Histochemical analysis revealed that A2-O, but not A2-J, induced lignin accumulation at the root tip, suggesting that physical reinforcement of cell walls with lignin is an important defense response against nematodes. The S. torvum-RKN system can provide a molecular basis for understanding plant-nematode interactions.

19.
Zoolog Sci ; 38(2): 140-147, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812353

RESUMO

Symbiotic associations with beneficial microorganisms endow a variety of host animals with adaptability to the environment. Stable transmission of symbionts across host generations is a key event in the maintenance of symbiotic associations through evolutionary time. However, our understanding of the mechanisms of symbiont transmission remains fragmentary. The deep-sea clam Phreagena okutanii harbors chemoautotrophic intracellular symbiotic bacteria in gill epithelial cells, and depends on these symbionts for nutrition. In this study, we focused on the association of these maternally transmitted symbionts with ovarian germ cells in juvenile female clams. First, we established a sex identification method for small P. okutanii individuals, and morphologically classified female germ cells observed in the ovary. Then, we investigated the association of the endosymbiotic bacteria with germ cells. We found that the symbionts were localized on the outer surface of the cell membrane of primary oocytes and not within the cluster of oogonia. Based on our findings, we discuss the processes and mechanisms of symbiont vertical transmission in P. okutanii.


Assuntos
Bactérias/classificação , Bivalves/microbiologia , Simbiose/fisiologia , Animais , Feminino , Brânquias/microbiologia , Oócitos/microbiologia
20.
Sci Rep ; 11(1): 1496, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452328

RESUMO

Identifying causative genes for a target trait in conifer reproduction is challenging for species lacking whole-genome sequences. In this study, we searched for the male-sterility gene (MS1) in Cryptomeria japonica, aiming to promote marker-assisted selection (MAS) of male-sterile C. japonica to reduce the pollinosis caused by pollen dispersal from artificial C. japonica forests in Japan. We searched for mRNA sequences expressed in male strobili and found the gene CJt020762, coding for a lipid transfer protein containing a 4-bp deletion specific to male-sterile individuals. We also found a 30-bp deletion by sequencing the entire gene of another individual with the ms1. All nine breeding materials with the allele ms1 had either a 4-bp or 30-bp deletion in gene CJt020762, both of which are expected to result in faulty gene transcription and function. Furthermore, the 30-bp deletion was detected from three of five individuals in the Ishinomaki natural forest. From our findings, CJt020762 was considered to be the causative gene of MS1. Thus, by performing MAS using two deletion mutations as a DNA marker, it will be possible to find novel breeding materials of C. japonica with the allele ms1 adapted to the unique environment of each region of the Japanese archipelago.


Assuntos
Cryptomeria/genética , Infertilidade das Plantas/genética , Alérgenos/genética , Antígenos de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Conservação dos Recursos Naturais/métodos , Cryptomeria/metabolismo , Etiquetas de Sequências Expressas , Agricultura Florestal/métodos , Testes Genéticos/métodos , Variação Genética/genética , Japão , Fenótipo , Melhoramento Vegetal/métodos , Infertilidade das Plantas/fisiologia , Pólen/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...